Audibility of linear distortion in loudspeakers

Sylvain Choisel

Philips Consumer Lifestyle
Leuven, Belgium

ALMA 1st European Symposium
Frankfurt, April 4th, 2009
Outline

- Introduction: what can we hear and what should we measure?
- Audibility of resonances in loudspeakers
- Audibility of phase mismatch
Introduction

• Floyd Toole: “Frequency response is the single most important aspect of the performance of any audio device.”

• In the case of loudspeakers, what frequency response?
 – On-axis, off-axis, both?
 – Magnitude only, or does phase matter?

• What are the measurements that are the most useful to predict what we can hear?
Introduction (cont’d)

• Factors affecting loudspeaker response
 – Transducer bandwidth
 – Diffraction
 – Directivity pattern
 – Cross-over
 – Resonances
 – Non-linear distortion
Time/frequency analysis

- Cumulative spectral decay (CSD)

\[CSD(\tau, f) = \int_{\tau}^{\infty} h(t) e^{-j2\pi ft} dt \]

Dyreby & Choisel, 2007
Time/frequency analysis

- Period-based cumulative spectral decay (PCDS)

\[\text{PCSD}(p, f) = \int_{\frac{P}{f}}^{\infty} h(t) e^{-j2\pi ft} dt \]

Dyreby & Choisel, 2007
Audibility of resonances

• Summary of literature
 – Peaks more audible than dips
 – High Q factor less audible than low Q
 – High-frequency resonances less audible than low-frequency ones
 – Stimulus type
 – Test environment
Listening test

- Selection of “typical” resonances

Uprichard & Choisel, 2008
Listening test – factors

• Resonances
 – Low freq. (700-1000 Hz) – Low Q (8)
 – High freq. (6-8 kHz) – High Q (30)

• Programme material: pop/classical

• 3 acoustic environments
 – Headphones
 – Listening room
 – Car

• 12 subjects

Uprichard & Choisel, 2008
Listening test – GUI

You are listening to stimulus...

1 2 3

The different stimulus is...

1 2 3

Your last answer was...

Correct

Click NEXT or hit the SPACE BAR when done.
Listening test – procedure

• 3-alternative forced choice

Uprichard & Choisel, 2008
Listening test – results

- Resonances are more audible at a lower Q
- Frequency has a small effect
- Acoustic Environment has a significant effect for Classical music

Uprichard & Choisel, 2008
Audibility of phase distortion

- **Ohm (1843):** The relative phase of the harmonic components has no audible effect.
- **Hartmann:** In general the relative phase between two signal components should be irrelevant if the two components are separated by more than a critical bandwidth.
- **Blauert and Laws (1978):** Group delay thresholds between 1 and 3.2 ms.
- **Lipshitz et al. (1982):** Even quite small midrange phase nonlinearities can be audible on suitably chosen signals.
Audibility of phase distortion

• Toole: within very generous tolerances, humans are insensitive to phase shifts. Under carefully contrived circumstances, special signals auditioned in anechoic conditions, or through headphones, people have heard slight differences. [...] When auditioned in real rooms, these differences disappear.

• Summary
 – Absolute phase distortion difficult to hear in realistic conditions
 – BUT relative phase distortion (between channels) may be more audible!
Phase mismatch

Choisel & Martin, 2008
Listening test

• 8 subjects
• Procedure: 3-AFC
• Broad-band pink noise, or
• Octave-band filtered pink noise (3rd order)
 – 8 bands centred at 63, 125 ... 8000 Hz
 – Same centre frequency as phase mismatch
• 2 playback conditions:
 – Headphones
 – Loudspeakers

Choisel & Martin, 2008
Part 2 – Results

- **Narrow-band vs. broadband**

![Graph showing frequency mismatch and maximum phase difference for narrow-band and broadband headphones.](image)

Choisel & Martin, 2008
Part 2 – Results

• Narrow-band vs. broadband

Choisel & Martin, 2008
Discussion

• Narrow-band vs. broad-band
 – Higher thresholds for narrow-band noise at high freq. →
 cues at lower frequencies were used in Part 1
 – Comparable thresholds at low frequencies → refutes the
 hypothesis of informational masking
 – Decrease in sensitivity might be level-dependent

• Loudspeakers vs. headphones
 – At low frequencies, higher thresholds for loudspeakers →
 spatial cues, lessened by cross-talk and room
 – At high frequencies, higher thresholds for headphones →
 interaural (spatial) cues cannot be used, timbral cues used
Implications

• Very low phase mismatch (7 deg) can be heard in headphones, this has implications on
 – Transducer matching
 – Headphone equalisation

• In loudspeakers placed in a listening room, the thresholds are much higher (50 deg. on average)
 – But very large differences between subjects – training increases sensitivity
Questions?